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Abstract. This paper explores the connection between wavelet methods and an efficient
computational algorithm—the discrete singular convolution (DSC). Many new DSC kernels are
constructed and they are identified as wavelet scaling functions. Two approaches are proposed to
generate wavelets from DSC kernels. Two well known examples, the Canny filter and the Mexican
hat wavelet, are found to be special cases of the present DSC kernel-generated wavelets. A family
of wavelet generators proposed in this paper are found to form an infinite-dimensional Lie group
which has an invariant subgroup of translation and dilation. If DSC kernels form an orthogonal
system, they are found to span a wavelet subspace in a multiresolution analysis.

1. Introduction

The widespread availability of less expensive high-performance computers has given
tremendous impetus to the development of computational methodology in every field of science
and engineering [1–19]. Most effort has been centred on developing either global methods
or local methods for solving a variety of time-dependent and time-independent computational
problems. The most commonly used local methods are finite differences, finite volumes, finite
elements and boundary elements. The well known global methods are fast Fourier transform
and spectral methods. Global methods are highly localized in spectral (momentum) space, but
have very poor spatial localization. In contrast, local methods have high spatial localization,
but are delocalized in spectral space. As a consequence, local methods can be easily adapted to
complex geometries and boundary conditions, while the major advantage of global methods is
their higher accuracy. In ordinary applications, it is relatively safe and efficient to use either a
global method or a local one for numerically solving an ordinary differential equation (ODE) or
a partial differential equation (PDE). However, when an ODE or PDE has singularities and/or
homoclinic orbits, neither global methods nor local methods can be applied without numerical
instabilities [20, 21]. The global methods lose their accuracy near the singularities due to
Gibbs oscillations. The local methods have to be implemented in an adaptive manner, which
greatly limits their accuracy and requires extremely small (spatial and/or time) mesh sizes.
Obviously, it is desirable to have methods which combine the accuracy of global methods with
the flexibility of local methods for practical applications.

Recently, a discrete singular convolution (DSC) algorithm was proposed as a potential
approach for the computer realization of singular convolutions [22–25]. Sequences of
approximations to the singular kernels of Hilbert type, Abel type and delta type were
constructed. Applications to analytical signal processing, Radon transform and surface
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interpolation were discussed. The mathematical foundation of this algorithm is the theory
of distribution [26]. Numerical solutions to differential equations are formulated via the
singular kernels of the delta type. By appropriately selecting the parameters of a DSC kernel,
the DSC approach exhibits the accuracy of global methods for integration and the flexibility
of local methods in handling complex geometries and boundary conditions. Recently, the
unified features of the discrete singular convolution algorithm have been discussed [25]. It is
demonstrated that different forms of implementation for the DSC algorithm, such as global,
local, Galerkin, collocation and finite difference, can be deduced from a single starting point.

Many DSC kernels, such as (regularized) Shannon’s delta kernel, (regularized) Dirichlet
kernel, (regularized) Lagrange kernel and (regularized) de la Vallée Poussin kernel, have
been constructed [22]. Practical applications were examined for the numerical solution of
the Fokker–Planck equation [22] of statistical theory, and for the Schrödinger equation [24]
of quantum mechanics. The DSC algorithm was also utilized in waveguide model analysis,
electromagnetic wave propagation [27] and structural analysis [28–30]. Another development
in the application of the DSC algorithm is its use in computing numerical solutions for
the Navier–Stokes equation. The standard Taylor problem (two-dimensional incompressible
Navier–Stokes equation with periodic boundary conditions) was solved to machine precision
with a few grid points [28]. A DSC-successive over-relaxation algorithm and a DSC-finite
subdomain method were developed for simulating the incompressible viscous flows [31] and
for highly irregular geometries [32], respectively. In the context of image processing, DSC
kernels were used to facilitate a new anisotropic diffusion operator for image restoration
from noise [33]. More recently, the DSC algorithm was used to resolve a few numerically
challenging problems. It was utilized to integrate the (nonlinear) sine-Gordon equation with
the initial values close to a homoclinic manifold singularity [23], for which conventional
local methods encounter great difficulties and result in numerically induced chaos [21].
Another difficult example that was resolved by using the DSC algorithm is the integration
of the (nonlinear) Cahn–Hilliard equation in a circular domain, which is challenging
because of the fourth-order artificial singularity at the origin and the complex phase space
geometry [34].

The objective of this paper is to draw the connection between the DSC algorithm and the
method of wavelets [35–45]. The latter has great impact in telecommunications and electronics
engineering [46] and its applications are found in a variety of other science and engineering
disciplines. Mathematically, wavelets are functions generated from a single function by dilation
and translation. They form building blocks for some space, such asL2(R), either as a frame or
as an orthonormal basis. Such building blocks are computationally important when they have
certain regularity and localization in both time and frequency domains. Physically, the wavelet
transform is a mathematical technique that can be used to split a signal into different frequency
bands or components so that each component can be studied with a resolution matching its scale,
thus providing excellent frequency and spatial resolution, and also achieving computational
efficiency. It was recognized by Holschneider et al [40,41] that, if a real-valued, non-negative
father wavelet, φ ∈ D, provides a smoothened version of a function f over the real line R by
means of the convolution product

�a,b(f ) = 〈φa(b), f 〉 =
∫ ∞

−∞
dt

1

a
φ

(
b − t

a

)
f (t) = φa(b) ∗ f (1)

then a wavelet transform can be given by

Wa,b(f ) = −a∂a
∫ ∞

−∞
dt

1

a
φ

(
b − t

a

)
f (t) =

∫ ∞

−∞
dt ψ

(
b − t

a

)
f (t) = ψa(b) ∗ f (2)
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where ψa(x) = ψ(x/a)/a and ψ(x) is a wavelet given by

ψ(x) = G1φ(x) = (x∂x + 1)φ(x) (3)

where G1 = (x∂x + 1) is a wavelet generator and it creates the Mexican hat wavelet for
φ(x) = 1√

π
e−x2

. The wavelet transform, equation (2), provides a mathematical microscopy
of f at length scale a. Among their applications, wavelets have been used most widely for
data compression in which a low-frequency component is encoded with fewer mesh points
by a down-sampling scheme without much loss of information. Signal processing methods
such as quadrature mirror filters go hand in hand with wavelet techniques for studying a
host of communication problems. Essentially, as discovered by Mallat and Meyer [35, 37],
wavelet multiresolution theory has a faithful representation in terms of subband filters. Due
to their multiresolution feature, wavelets are a useful tool for analysing fractals and associated
dynamical processes. Wavelet packets are found to be useful for local characterization of
classical turbulence and for pattern recognition. There have been applications of wavelet theory
in statistical mechanics in terms of phase space representation and renormalization group.
A general group theory description of wavelet transform has also been studied [39, 41, 47].
However, there are still some areas where the existing wavelet methods encounter enormous
difficulties [48]. In particular, computational fluid dynamics, and computational physics and
mechanics in general, come under this category. Since wavelets are intimately and significantly
related to spline theory, the theory of approximation and basis of minimum support, they should
have great potential to lead to entirely new approaches for scientific computation. This paper
extends the wavelet generator G1 to a family of new generators Gn (n = 0, 1, 2, . . .). The
role of the real-valued, non-negative father wavelet, φ ∈ D, is replaced by DSC delta kernels.
It is hoped that the connection made in this paper between the DSC algorithm and wavelet
methods might be useful for the development of efficient and robust wavelet algorithms for
solving differential equations. We also hope that the findings of this paper will promote the use
of the DSC as a powerful algorithm for image processing and pattern recognition, for which
wavelet theory has found great success.

This paper is organized as following: in section 2, we briefly discuss the DSC algorithm
and a number of delta sequence kernels used in the realization of the DSC algorithm. In
section 3, DSC delta sequence kernels are identified as wavelet scaling functions. The role of
orthogonal DSC kernels in a multiresolution framework is studied. Two general approaches
are given for transforming a DSC kernel into a wavelet. The first transformation is new and
is shown to form an infinite-dimensional Lie group which includes the group of translation
and dilation as an invariant subgroup. A new set of Shannon’s wavelets is obtained by this
transformation. The other approach is the standard difference method, in which a wavelet is
constructed by the difference of two unequally parametrized scaling functions. This paper
ends with a discussion.

2. Discrete singular convolution

Singular convolutions (SC) are a special class of mathematical transformations, which appear
in many science and engineering problems, such as the Hilbert, Abel and Radon transforms. It
is most convenient to discuss singular convolutions in the context of the theory of distribution.
The latter has important ramifications in mathematical analysis. Not only does it provide
a rigorous justification for a number of informal manipulations in physical and engineering
science, but it also opens up a new area of mathematics, which in turn gives impetus to many
other mathematical disciplines, such as operator calculus, differential equations, functional
analysis, harmonic analysis and transformation theory. In fact, the theory of wavelets and
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frames, a new mathematical branch developed in recent years, can also find its root in the
theory of distributions.

Let T be a distribution and η(t) be an element of the space of test functions. A singular
convolution is defined as

F(t) = (T ∗ η)(t) =
∫ ∞

−∞
T (t − x)η(x) dx. (4)

Here T (t − x) is a singular kernel. Depending on the form of the kernel T , the singular
convolution is the central issue for a wide range of science and engineering problems. For
example, singular kernels of the Hilbert type have a general form of

T (x) = 1

xn
(n = 1, 2, . . .). (5)

Here, kernel T (x) = 1
x

occurs commonly in electrodynamics, theory of linear response, signal
processing, theory of analytic functions and the Hilbert transform; T (x) = 1

x2 is the kernel
used in tomography. Another interesting example is the singular kernels of the Abel type

T (x) = 1

xβ
(0 < β < 1). (6)

These kernels can be recognized as special cases of the singular integral equations of Volterra
type of the first kind. Singular kernels of the Abel type have applications in the area of
holography and interferometry with phase objects (of practical importance in aerodynamics,
heat and mass transfer, and plasma diagnostics). They are intimately connected with the
Radon transform, for example, in determining the refractive index from the knowledge of a
holographic interferogram. The other important example is the singular kernel of the delta
type

T (x) = δ(n)(x) (n = 0, 1, 2, . . .). (7)

Here, kernel T (x) = δ(x) is of particular importance for interpolation of surfaces and curves
(including atomic, molecular and biological potential energy surfaces, and for a variety of image
processing and pattern recognition problems) and T (x) = δ(n)(x), (n = 1, 2, . . .) are essential
for numerically solving partial differential equations. However, since these kernels are singular,
they cannot be directly digitized in a computer. Hence, the singular convolution, equation (4),
is of little numerical merit. To avoid the difficulty of using singular expressions directly in a
computer, sequences of approximations (Tα) of the distribution T can be constructed:

lim
α→α0

Tα(x) −→ T (x) (8)

where α0 is a generalized limit. Obviously, in the case of T (x) = δ(x), the sequence, Tα(x),
is a delta sequence kernel. Note that one retains the delta distribution at the limit of a delta
sequence kernel, which is a real constant in the frequency space and is the so-called all pass
filter. Computationally, the delta distribution is a universal reproducing kernel which can
be used as a starting point for the construction of either band-limited reproducing kernels or
approximate reproducing kernels. Furthermore, with a sufficiently smooth approximation, it
is meaningful to consider a discrete singular convolution (DSC)

Fα(t) =
∑
k

Tα(t − xk)f (xk) (9)

where Fα(t) is an approximation to F(t) and {xk} is an appropriate set of discrete points
on which the DSC (9) is well defined. Note that the original test function η(x) has been
replaced by f (x). The mathematical properties or requirements of f (x) are determined by
the approximate kernel Tα . In general, the convolution is required to be Lebesgue integrable.
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The most commonly used DSC kernels are the delta sequence kernels, which are
approximations to the delta distribution or so-called Dirac delta function (δ). Delta distribution
is a generalized function which is integrable inside a particular interval but in itself does not need
to have a value. The theory of distribution has been studied by Schwartz [26], Korevaar [49]
and others. The use of delta sequences as probability density estimators was discussed by
Walter and Blum [50] and others [51–53].

Definition 1. Let {δα} be a sequence of kernel functions on (−∞,∞) which are integrable
over every bounded interval. We call {δα} a delta sequence kernel of positive type if:

(1)
∫ a

−a δα → 1 as α → α0 for some finite constant a.

(2) For every constant γ > 0, (
∫ −γ
−∞ +

∫ ∞
γ
)δα → 0 as α → α0.

(3) δα(x) � 0 for all x and α.

Useful examples of delta sequence kernels of the positive type include the following:

The impulse functions

δα(x) =
{
α for 0 < x < 1/α α = 1, 2, . . .

0 otherwise.
(10)

Gauss’s delta sequence kernel

δα(x) = 1√
2πα

e−x2/2α2
. (11)

Lorentz’s delta sequence kernel

δα(x) = 1

π

α

x2 + α2
(12)

and its generalized form

δα,n(x) = 1

π

αnxn−1

x2n + α2n
for n � 1. (13)

Landau’s delta sequence kernel

δn(x) =
{
Ln(x) for |x| � a

0 otherwise
(14)

where

Ln(x) = (a2 − x2)n∫ a

−a(a
2 − y2)n dy

for n = 0, 1, 2, . . . and a > 0. (15)

Poisson’s delta sequence kernel family

δα(x) =
{
Pα(x) for |x| � π

0 otherwise
(16)

where

Pα(x) = 1

π

[
1

2
+ α cos(x) + α2 cos(2x) + · · ·

]

= 1 − α2

2π(1 − 2α cos(x) + α2)
(0 � α < 1). (17)
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Fejér’s delta sequence kernel

δα(x) =



Fα(x) for |x| � π for α = 0, 1, 2, . . .

0 otherwise

(18)

where

Fk(x) = 1

k
[D0(x) + D1(x) + · · · + Dk−1(x)]

= sin2( 1
2kx)

2πk sin2( 1
2x)

− ∞ < x < ∞ (19)

and Dk are given by the partial sum of the discrete Fourier series:

Dk(x) = 1

π

[
1

2
+ cos(x) + cos(2x) + · · · + cos(kx)

]

= sin[(k + 1
2 )x]

2π sin 1
2x

k = 0, 1, 2, . . . . (20)

Generalized Fejér’s delta sequence kernel

δα(x) = 2

π

sin2(αx)

αx2
∀x ∈ R. (21)

Delta sequence kernels generated by dilation
Let ρ ∈ L1(R) be a non-negative function with

∫
ρ(x) dx = 1, then dilation of ρ given

by

ρα(x) = 1

α
ρ

(x
α

)
(α > 0) (22)

leads to a delta sequence kernel, ρα → δ, as α → 0.

A common feature of the above-mentioned delta sequence kernels is that they are all non-
negative functions. In fact, what are used in most of our numerical computations are the delta
sequence kernels of Dirichlet type.

Definition 2. Let {δα} be a sequence of functions on (−∞,∞)which are integrable over every
bounded interval. We call {δα} a delta sequence kernel of the Dirichlet type if:

(1)
∫ a

−a δα → 1 as α → α0 for some finite constant a.

(2) For every constant γ > 0, (
∫ −γ
−∞ +

∫ ∞
γ
)δα → 0 as α → α0.

(3) There are positive constants C1 and C2 such that

|δα(x)| � C1

|x| + C2

for all x and α.

We list a few useful examples of delta sequence kernels of the Dirichlet type:
Dirichlet kernel

δα(x) =
{
Dα(x) for |x| � π for α = 0, 1, 2, . . .

0 otherwise
(23)

where Dα is the Dirichlet kernel given by equation (20).
Modified Dirichlet kernel

δα(x) =
{
D∗
α(x) for |x| � π for α = 0, 1, 2, . . .

0 otherwise
(24)
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where

D∗
α(x) = Dα − 1

2π
cos(αx)

= sin(αx)

2π tan( 1
2x)

α = 0, 1, 2, . . . . (25)

Lagrange kernel

δM,k(x) =
{
LM,k(x) for a � x � b for M = 1, 2, . . .

0 otherwise
(26)

where the Lagrange interpolation formula

LM,k(x) =
i=k+M∏

i=k−M,i �=k

x − xi

xk − xi
(M � 1) (27)

is defined on an interval (a, b) with a set of 2M + 1 ordered discrete points:

{xi}k+M
i=k−M : xk−M = a < xk−M+1 < · · · < xk < · · · < xk+M = b. (28)

The de la Vallée Poussin delta sequence kernel

δn,p(x) =
{
Pn,p(x) for |x| � π for p = 0, . . . , n n = 0, 1, . . .

0 otherwise
(29)

where

Pn,p(x) = 1

p + 1

n∑
k=n−p

Dk(x)

= 1

2π
+

1

π

n−p∑
k=1

cos kx +
1

π

p∑
k=1

[
1 − k

p + 1

]
cos[(n− p + k)x]

= sin[(2n + 1 − p)x2 ] sin[(p + 1) x2 ]

2π(p + 1) sin2( x2 )
p = 0, . . . , n n = 0, 1, . . . .

(30)

Note that the de la Vallée Poussin kernel reduces to the positively defined Ferér’s kernelFn+1(x)

when p = n. A simplified de la Vallée Poussin kernel given by

δα(x) = 1

πα

cos(αx)− cos(2αx)

x2
(31)

is found to be very useful numerically [22].
Shannon’s delta sequence

δα(x) = sin(αx)

πx
. (32)

DSC kernels constructed by orthogonal basis expansions
Let {ψi} be a complete orthonormal L2(a, b) basis, then

δn(x, y) =
n∑
i=0

ψi(x)ψi(y) x, y ∈ (a, b) (33)

are DSC delta sequence kernels. In the case of trigonometric functions, we again obtain the
Dirichlet kernels. Hermite function expansion, evaluated at x = 0, is given by

δn(x) = exp
(−x2

) n∑
k=0

(−1

4

)k 1√
πk!

H2k(x) ∀x ∈ R (34)
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where H2k(x) is the usual Hermite polynomial.
The regularity of a kernel approximation can be improved by using a regularized form

δα(x)Rσ (x) (35)

where Rσ (x) is a regularizer:

lim
σ→∞Rσ (x) = 1 (36)

Rσ (0) = 1. (37)

A commonly used delta-kernel regularizer is the Gaussian, e−x2/2σ 2
, which is a Schwartz class

function. Except for the delta sequence kernels generated by the Hermite functions, all of the
above-mentioned kernels of the Dirichlet type are found to perform better in many practical
applications in their regularized form as prescribed by equation (35) [22, 25]. A comparison
of delta sequence kernels of positive type and Dirichlet type is given in figure 1.

3. Wavelets generated by using DSC kernels

Wavelets have been widely used as an analysis tool for various applications. The essential
reason for this lies in the fact that both orthogonal and nonorthogonal wavelets can provide
decomposition of a function at a variety of different scales. In other words, wavelets form
special L2(R) bases or frames for representing a function at various levels of detail, leading to
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so-called mathematical microscopes. This turns out to be very efficient for approximating and
analysing functions in many applications. Orthogonal wavelets and multiresolution analysis
have been successfully used in a variety of engineering fields. They play a special role
in those applications where orthogonality is strongly required. In many other applications,
nonorthogonal wavelets, or frames, are also very useful. Generating new types of wavelets
has been of great importance in wavelet theory. Most of the DSC delta sequence kernels
described in section 2 can be regarded as scaling functions (father wavelets). Physically, they
are low-pass filters. In particular, Shannon’s scaling function is an ideal low-pass filter in the
frequency space with a finite bandwidth, which allows a perfect representation for a band-
limited function by a discrete but infinite set of samplings. Hence, these scaling functions can
also be systematically transformed into mother wavelets which are high-pass filters from the
physics point of view. For an orthogonal system, the combination of a low-pass filter and all
high-pass filters will give rise to a wavelet basis representation for the L2(R). The orthogonal
wavelets are briefly reviewed in the first subsection. The connection between DSC delta
sequence kernels and wavelets is made in the second subsection. The construction of mother
wavelets from various DSC delta sequence kernels is discussed in the last three subsections.

3.1. Orthogonal wavelets

The formal theory of orthogonal wavelets on L2(R) has been presented in many books [35,
36, 38]. An orthogonal wavelet system is usually generated from a single function, either a
scaling function (father wavelet) φ or a mother wavelet ψ , by standard translation and dilation
techniques:

φmn(x) = 2− m
2 φ

( x

2m
− n

)
m, n ∈ Z (38)

ψmn(x) = 2− m
2 ψ

( x

2m
− n

)
m, n ∈ Z (39)

where the symbol Z denotes the set of all integers. This can be phrased rigorously in terms of
a multiresolution analysis, i.e. a nested sequence of subspaces {Vm}, m ∈ Z such that:

(1) {φ(x − n)} is an orthogonal basis of V0;
(2) · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L2(R);
(3) f (x) ∈ Vm ↔ f (2x) ∈ Vm−1;
(4) ∩mVm = {0} and ∪mVm = L2(R).

Since φ ∈ V0 ⊂ V−1, it can be expressed as a superposition of {φ−1,n}, which spans an
orthogonal basis for V−1

φ(x) =
∑
n

anφ−1,n (40)

where {an} is a set of finite coefficients.
For an orthogonal system, the subspace V−1 can be further split into its orthogonal

projection on V0 and a complementary W0:

V−1 = V0 ⊕W0 (41)

where W0 is a subspace spanned by orthogonal mother wavelets {ψ}. In general, ψmn, n ∈ Z

is an orthogonal basis of W−m and⊕
m∈Z

Wm = L2(R). (42)
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It follows that ψmn (m, n ∈ Z) is an orthogonal basis of L2(R). Similar to equation (40), the
mother wavelet can also be expressed as a superposition of {φ−1,n}

ψ(x) =
∑
n

bnφ−1,n (43)

where bn are expansion coefficients.
Perhaps the simplest example is the Haar’s wavelet system [38] which is given by

φ(x) = χ[0,1)(x), the characteristic function of interval [0, 1). It obviously has orthogonal
translation. The dilation of φ(x) results in characteristic functions for a smaller (or larger)
interval and each of them spans a subspace Vm by translations. Haar’s wavelets play a unique
role in the wavelet theory and application, by their simplicity.

It is not obvious whether a multiresolution analysis exists for φ other than the Haar system.
The construction of the first few orthogonal wavelet bases is more or less an art rather than
a procedure; it requires ingenuity, special tricks and subtle computations. One procedure
used by Meyer [35] is to start with a spline function θ(x) = (1 − |x − 1|)χ[0,2) which, by
translations, spans a nonorthogonal Riesz basis (a frame of the least redundancy possible).
The corresponding orthogonal basis {φ} is represented in Fourier space as φ̂(ξ) = α(ξ)θ̂(ξ),
where α(ξ) is the function to be determined. Using both the orthonormality requirement:

δ0,n = 〈φ0,0, φ0,n〉 (44)

and the periodicity, φ̂, can be resolved as

φ̂(ξ) = sin2(ξ/2)

(ξ/2)2

(
1 − 2

3
sin2 ξ

2

)− 1
2

. (45)

The space V0 is spanned by piecewise linear functions.
Daubechies presented another approach for constructing orthogonal wavelets [36]. In the

Fourier representation, the dilation equation can be written as

φ̂(ξ)

φ̂(ξ/2)
= m0(ξ/2) (46)

where m0 is a 2π -periodic function. The orthonormality condition then requires

|m0(ξ/2)|2 + |m0(ξ/2 + π)|2 = 1. (47)

It turns out that, if the set of expansion coefficients an of equation (40) is chosen as a0 =
ν(ν−1)/(ν+1)

√
2, a1 = −(ν−1)/(ν+1)

√
2, a2 = (ν−1)/(ν+1)

√
2, a3 = ν(ν+1)/(ν+1)

√
2,

(ν ∈ R), then equation (47) will be satisfied and consequently φ can be found recursively.

3.2. DSC kernels as scaling functions

Let {δα} (where α → α0) be a sequence of Cm functions on (−∞,∞) which are integrable
over every bounded interval, and

(1) δ̂α(0) = 1 for each α;
(2) limα→α0 δ̂α(ξ) → 1 for all ξ ;
(3) for every constant γ > 0, (

∫ −γ
−∞ +

∫ ∞
γ
)δα → 0 as α → α0;

(4) and ‖ xδα(x) ‖∞< ∞ for all x and α.

Then {δα} refers to the DSC delta sequence kernels (or DSC kernels in short) and each function
can be admitted as a scaling function,

∫
δα = 1, for all α �= α0 and the integration stands even

for α = α0 from the point of view of distributions. It is noted that most DSC kernels given
in the previous section satisfy these conditions. We call this class of scaling functions ‘DSC
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kernel-generated scaling functions φα’. The corresponding ‘DSC kernel-generated mother
wavelets ψα’ have the Fourier transform property

ψ̂α(0) =
∫
ψα(x) dx = 0. (48)

It is natural to view DSC delta sequence kernels as scaling functions. In particular, if
a DSC delta sequence kernel has the structure that δα = 1

α
ρ( x

α
) and

∫
ρ(x) dx = 1 (this is

the case for many examples given in section 2), then δα is a sequence of scaling functions at
different scales. In contrast to the delta distribution which only has a point support, a function
in a DSC delta sequence kernel can have an arbitrary support, depending on the scale. In
the limit α → α0, the DSC delta sequence kernel converges to the delta distribution and the
support shrinks down to a point. The resulting delta distribution actually helps to furnish the
wavelet multiresolution analysis

{δ} ⊕
⊕
m∈Z

Wm = L2(R) (49)

where {δ} is the space spanned by the delta distribution, which, however, has only a point
support. Clearly, if a DSC delta sequence kernel is an orthogonal system, such as Dirichlet’s
continuous delta sequence kernel, for a fixed α �= α0, we have

{δα} ⊕
m=0⊕
−∞

Wm = {δ} ⊕
⊕
m∈Z

Wm = L2(R) (50)

where {δα} spans the wavelet subspace V0. Hence the orthogonal DSC delta sequence kernel
spans the wavelet subspace {δ} ⊕ ⊕∞

1 Wm for an appropriate choice of α.
DSC kernel-generated mother wavelets can be constructed in many different ways. We

discuss two of them in the following subsections.

3.3. Wavelets generated by differentiation pairs

For a given Cm symmetric scaling function φ, we define a family of wavelet generators

Gn = x
∂n

∂xn
+ n

∂n−1

∂xn−1
n = 0, 1, 2, . . . , m (51)

for generating a family of m + 1 mother wavelets

ψα,n(x) = Gnφα(x) for φ ∈ Cm and n = 0, 1, 2, . . . , m. (52)

Obviously, the wavelet generator given by Holschneider et al [40, 41] in equation (3) is a
special case of Gn, corresponding to G1. It is noted that this approach is not restricted to the
DSC kernel-generated wavelet and is actually a very general and efficient way for creating
wavelets from a given Cm symmetric scaling function.

The present wavelet generators are closely related to the transformation Lie group of
translation and dilation. This is because the Fourier image of distributions

Gn = x
∂n

∂xn
+ n

∂n−1

∂xn−1
n = 0, 1, 2, . . . (53)

forms an infinite-dimensional wavelet Lie algebra with elements {Xn = ξn−1∂ξ |n =
0, 1, 2, . . .} (here we follow the convention that statements concerning the structure of a Lie
algebra are made only on the basis of the real Lie algebra). The whole Lie algebra structure
of {Xn} is simply given by

[Xn,Xm] = (m− n)Xm+n−2 n,m = 0, 1, 2, . . . . (54)



8588 G W Wei

X1 by itself generates a one-parameter noncompact Abelian group which is obviously the
translation group in momentum space. X2 is one of the generators for a dilation group. There
are two nontrivial invariant subalgebras:

[X1, X2] = X1 (55)

and

[X1, X2] = X1 [X1, X3] = 2X2 [X2, X3] = X3. (56)

X1, X2 are the infinitesimal generators of a two-dimensional translation and dilation group.
The third element X3 is a quadratic dilation (superdilation), which allows us to generate
another invariant subalgebra, equation (56). This result indicates that the present method of
systematically generating wavelets is a very general one. It is noted that the present wavelet
algebra is closely related to the mathematical structure (Virasoro algebra) in the superstring
theory. More details about the general connection between the present wavelet generators and
quantum field theory will be discussed elsewhere.

It is very easy to construct various DSC kernel-generated wavelets by applying examples
given in section 2 to the right-hand side of equation (52). A few examples are given below.

Example 1 (Mexican hat wavelet and generalizations). If we take Gauss’s delta sequence
kernel as a scaling function, φα(x) = 1√

2πα
e−x2/2α2

, then the expression given by n = 1

ψα,1(x) = 1√
2πα

(
1 − x2

α2

)
e−x2/2α2

(57)

is the well known Mexican hat wavelet [36]. Taking n = 3 yields

ψα,3(x) = −1√
2πα

(
x4

α6
− 6x2

α4
+

3

α2

)
e−x2/2α2

(58)

which is an interesting ‘Mexican superhat wavelet’. This wavelet is expected to perform better
than the Mexican hat for some applications. Since Gauss’s kernels are C∞ functions, there
are infinitely many Gauss kernel-generated wavelets given by

ψn(x) = Gn 1√
π

e−x2 = 1√
π

(−1)n

2
Hn+1(x)e

−x2
n = 0, 1, 2, . . . . (59)

It is seen that the celebrated Mexican hat wavelet [36] is just a special case of equation (59).
From the quantum mechanics point of view, the operator Gn creates an n + 1 excited mode
from the ground state H0. This is true only for the system described by the Hermite functions.
In general, the operator Gn creates different patterns for different systems.

The first few examples of Gauss kernel-generated wavelets are plotted in figure 2 (full
curves). It is seen thatψ0(x) looks like the Haar wavelet and is very useful in image processing
and edge detection (known as the Canny operator). The Mexican hat wavelet, ψ1(x), has two
nontrivial zeros and, as a wavelet filter, it should have better frequency response to higher
frequency components. In general, Gauss kernel-generated wavelets involve the Hermite
polynomials of degree n + 1 and have n + 1 nontrivial zeros. For applications in image
processing, particularly edge detection, the first few low-order Gauss kernel-generated wavelets
are sufficient because most of the energy of an image edge is concentrated in the low-frequency
region. However, for accurate scientific computations, such as solving a partial differential
equation, higher-order Gauss kernel-generated wavelets are required.
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Figure 2. A comparison of wavelets generated byGn. Full curve: Gauss kernel-generated wavelets
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x
e−x2

.

It is interesting to note that all higher-order Hermite functions (n �= 0), together with the
Gaussian weight, are mother wavelets, while the lowest-order Hermite function is a scaling
function. This can be naturally seen from the orthonormality condition∫

1√
π2nn!

Hn(x)Hm(x)e
−x2

dx = δnm n,m = 0, 1, 2, . . . . (60)

Here, if the second polynomial is fixed as a constant when m = 0, then the only case for
Hn to give a nonzero integration is n = 0, which determines a scaling function. All other
Hn (n �= 0) give rise to mother wavelets. (Note that, when m = 0, the integration becomes L1

and is related to Fourier transform at the origin.) We point out that this result is not limited
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to Hermite polynomials. It is generally true that all polynomial systems form an orthogonal
L2(a, b) with respect to appropriate weights. A systematic study of the general connection
between wavelets and conventional Hilbert space bases is discussed elsewhere.

Example 2 (Hermite’s kernel generated wavelets). In the case of Hermite’s kernels,
equation (34), we have

1H(x|m, n) =
(
x
∂m

∂xm
+ m

∂m−1

∂xm−1

)
δn(x)

= exp(−x2)

n∑
k=0

(−1)k+m 1√
π22k+1k!

[H2k+m+1(x) + 4kH2k+m−1(x)] (61)

where m, n = 0, 1, 2, . . . . Here, some simple properties of Hermite functions have been
used for simplifying the results. If one chooses the scaling as α = 1√

2
, Mexican hat wavelet,

1√
π
(1 − 2x2)e−x2

, and the Mexican superhat wavelet, −2√
π
(4x4 − 12x2 + 3)e−x2

, are given
by 1H(x|1, 0) and 1H(x|3, 0), respectively. In general, the whole series of Gauss kernel-
generated wavelets, equation (59), are given as special cases, by1H(x|m, 0),m = 0, 1, 2, . . . .

Example 3 (Shannon’s wavelet family). Dirichlet’s continuous kernel is related to the well
known Shannon’s scaling function [36] or the sinc function, φα(x) = 1

π

sin(αx)
x

. The latter
is known for generating an orthogonal basis for a reproducing kernel Hilbert space. The
corresponding reproducing kernels give rise to a sampling basis for certain band-limited L2

functions. A family of (mother) wavelets can be generated by using the present wavelet
generators, equation (51),

ψα,n(x) =
(
x
∂n

∂xn
+ n

∂n−1

∂xn−1

)
1

π

sin(αx)

x

= 1

π
sin(αx) for n = 0

= α

π
cos(αx) for n = 1

= −α2

π
sin(αx) for n = 2

...

=



(−1)qα2q

π
sin(αx) for n = 2q

(−1)qα2q+1

π
cos(αx) for n = 2q + 1 (q ∈ Z+).

(62)

These are the basis functions for the well known sine and cosine transforms. Thus, the
commonly used sine and cosine transforms can be regarded as special wavelets generated
from the Shannon’s scaling function (or the sinc function). These results are in contrast
to Shannon’s wavelet, 1

πx
[sin(2πx) − sin(πx)]. Obviously, all these wavelets can be used

to generate orthogonal wavelet bases by the standard method of translation and dilation. It
seems to us that if the starting scaling function generates an orthogonal system, then the
corresponding wavelets created by the present wavelet generators, equation (51), can also be
orthogonal systems.
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Example 4 (Regularized Shannon’s wavelet family). Obviously the expressions given in
the last example do not decay asymptotically. The regularized Shannon’s kernel given in
equation (35)

φα,σ (x) = 1

π

sin(αx)

x
e−x2/2σ 2

(63)

can be used to generate a family of wavelets with the desired asymptotic properties:

ψn(x) =
(
x
∂n

∂xn
+ n

∂n−1

∂xn−1

)
1

π

sin(αx)

x
e−x2

= 1

π
sin(αx)e−x2

for n = 0

= 1

π
[α cos(αx)− 2x sin(αx)]e−x2

for n = 1

= 1

π
[−α2 sin(αx)− 4αx cos(αx)− 2 sin(αx)

+4x2 sin(αx)]e−x2
for n = 2

= 1

π
[−α3 cos(αx) + 6α2x sin(αx)− 6α cos(αx)

+12αx2 cos(αx)− 8x3 sin(αx) + 12x sin(αx)]e−x2
for n = 3

= 1

π
[12 sin(αx) + 12α2 sin(αx)− 48x2 sin(αx) + 8α3x cos(αx) + 16x4 sin(αx)

−24α2x2 sin(αx)− 32αx3 cos(αx) + α4 sin(αx)

+48αx cos(αx)]e−x2
for n = 4 · · · . (64)

For simplicity, we have set σ = 1√
2
. The first few terms of regularized Shannon’s wavelets

and a comparison with Gauss kernel-generated wavelets are given in figure 2. When n is even,
all wavelets are antisymmetric with respect to the origin and symmetric wavelets are obtained
for odd n. For α = 1 (dots), each regularized Shannon’s wavelet resembles a Gauss kernel-
generated wavelet of the same order. When a larger α is taken (α = π , crosses in figure 2),
regularized Shannon’s wavelets become more oscillatory. Obviously, by an appropriate
selection of the parameter α, regularized Shannon’s wavelets are expected to perform better
than the Gauss kernel-generated wavelets in high-accuracy scientific computations.

3.4. More general wavelet generators

For a given Cm symmetric scaling function φ, a generalized family of wavelet generators is
defined as

Gn
l =

n∑
p=0

n!

(n− p)!p!
[x2l+1](p)

∂n−p

∂xn−p

n = 0, 1, 2, . . . , m l = 0, 1, 2, . . . , (m− 1)/2 or (m− 2)/2. (65)

Obviously the wavelet generator discussed above is a special case of the present definition and
corresponds to l = 0. In the case of l = 1, wavelet generators are given by

Gn
1 = x3 ∂

n

∂xn
+ 3nx2 ∂

n−1

∂xn−1
+ 3n(n− 1)x

∂n−2

∂xn−2
+ n(n− 1)(n− 2)

∂n−3

∂xn−3
. (66)

These can be used to generate families of wavelets.
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Figure 3. The first few terms of wavelets generated by Gn
1

1√
π

e−x2
.

Example 5 (Gauss’s kernel-generated wavelets). If the scaling function is given by the
Gauss kernel, φα(x) = 1√

πα
e−x2

, we obtain a family of wavelets by using Gn
1

lψn,1(x) = Gn
1

1√
π

e−x2

= (−1)n

23
√
π

[Hn+3(x) + 6Hn+1(x)]e
−x2

n = 0, 1, 2, . . . . (67)

The first few terms of these wavelets are plotted in figure 3.
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Example 6 (Shannon’s wavelet family). A new Shannon’s wavelet family can be generated
by applying generator Gn

1 to φα(x) = 1
π

sin(αx)
x

. After some tedious derivations, we have

ψn,1(x) = Gn
1

1

π

sin(αx)

x

=




(−1)qα2qx2

π
sin(αx)+

(−1)q−14qα2q−1x

π
cos(αx)

+
(−1)q−12q(2q − 1)α2q−2

π
sin(αx) for n=2q

(−1)qα2q+1x2

π
cos(αx)+

(−1)q(4q + 2)α2qx

π
sin(αx)

+
(−1)q−12q(2q + 1)α2q−1

π
cos(αx) for n=2q + 1

(n,= 0, 1, 2, . . .).

(68)

Obviously, this is an unbounded function for large x and α > 1. If the regularized DSC kernel,
φα,σ (x) = 1

π

sin(αx)
x

e−x2/2σ 2
, is used, the resulting wavelet, Gn

1φα,σ (x), is well behaved on the
real line.

A more detailed discussion on general properties, including Lie algebraic aspects of these
generators, is beyond the scope of this paper.

3.5. Wavelets generated by difference pairs

Another simple and efficient way of generating wavelets from DSC kernels is to take the
difference between two normalized DSC kernels:

ψα,β(x) = φα − φβ. (69)

Example 7 (Hermite wavelets and the Mexican hat wavelet). In the case of Hermite’s
kernel, equation (34), we have

ψn,n′ = e−x2/2
n∑
k=0

(−1

4

)k 1√
2πk!

H2k

(
x√
2

)
− e−x2/2

n′∑
k=0

(−1

4

)k 1√
2πk!

H2k

(
x√
2

)

= e−x2/2
n∑

k=n′+1

(−1

4

)k 1√
2πk!

H2k

(
x√
2

)
. (70)

This is a general expression for a family of nonorthogonal wavelets. In particular, if
n = 1, n′ = 0, we obtain

ψ1,0(x) = 1

2
√

2π
(1 − x2)e−x2/2. (71)

This is, once again, the well known Mexican hat wavelet [36]. The Hermite wavelets described
in equation (59), which differs by a constant, can be easily obtained by appropriately choosing
n′ = n− 1 in equation (70).

Example 8 (Shannon’s wavelet). We can use Dirichlet’s continuous kernel as a scaling
function, φα(x) = 1

π

sin(αx)
x

. Then the corresponding mother wavelets generated by
equation (69) are

ψα,β(x) = 1

π

[
sin(αx)

x
− sin(βx)

x

]
for α �= β �= 0. (72)
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This family includes the well known Shannon’s wavelet [36] as a special case:

ψ2π,π (x) = 1

πx
[sin(2πx)− sin(πx)]. (73)

It is easy to check that this Shannon’s wavelet generates an orthogonal system, which is in
contrast to the other family of Shannon’s wavelets, equation (62).

Example 9 (Gauss’s wavelets). It is noted that this procedure of generating wavelets is also
very general. For example, a wavelet can be constructed by combining a pair of functions
from the Gauss kernel:

ψα,β(x) = 1√
2π

[
1

α
e−x2/2α2 − 1

β
e−x2/2β2

]
for α �= β �= 0. (74)

Note that this is not a special case of example 1.
In the case where there is more than one parameter, the corresponding wavelets can be

generated as differences of cross terms.

4. Discussion

The general connection between the delta sequence kernels used in the DSC algorithm and
wavelets has been brought out in some detail. Qualitatively, DSC kernels can be regarded as
wavelet scaling functions. If a DSC kernel is an orthogonal system, it is found to span the
wavelet subspace V0 in a multiresolution analysis. Many DSC kernels arising in mathematical,
physical and engineering applications are discussed. Most DSC kernels of Dirichlet type have
been found to be extremely efficient and robust for numerical solution of partial differential
equations [22–25] and for image processing [33]. The use of DSC kernels of positive type for
numerical computations is under consideration.

A family of wavelet generators is constructed for converting DSC kernels into mother
wavelets. The second member of the family is exactly the wavelet generator given by
Holschneider et al [40, 41]. The use of the wavelet generator given by Holschneider et al
is restricted to non-negative functions, whereas many examples in this paper are constructed
from DSC kernels of Dirichlet type. By an appropriate choice of the scale parameter, wavelets
generated by DSC kernels of Dirichlet type are more oscillatory. Thus they have an advantage
for numerical approximation of functions with high-frequency components.

The generators are connected with an infinite-dimensional Lie algebra which has an
extremely simple algebraic structure and includes the algebra of translation and dilation as
an invariant subalgebra. The corresponding Lie group provides a mathematical description of
wavelets, which is more general than the usual translation and dilation group. A set of new
orthogonal wavelets is found in the case of Dirichlet’s continuous kernel, which enables us to
make a connection between Shannon’s wavelets and the standard sine and cosine transforms.
The well known Mexican hat wavelet has been shown to be a special case of a variety of
Hermite wavelets, derived by two distinct approaches.

The general connection between wavelet bases and conventional L2(a, b) polynomial
bases is briefly discussed. Essentially, the lowest-order polynomial corresponds to a scaling
function and all higher-order polynomials are related to mother wavelets, provided that the
polynomials are orthogonal with respect to an appropriate weight.

The wavelet property of compact support is emphasized by the applied mathematics and
computer science communities. However, the physics community seems to be more interested
in other wavelet features, such as time–frequency localization and multiresolution analysis.
In fact, non-compactly supported wavelets and Wigner functions have far more impact on the
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physics community than the compactly supported ones. We note that DSC kernel-generated
wavelets discussed in this paper are mostly non compact support. Our numerical experience
indicates that compact supportness is not very important in digital computations. The important
issue is, for a given algorithm, how to make the truncation error as small as one wishes.

In practical applications, the most attractive properties of wavelet methods are time–
frequency localization and multiresolution analysis. Wavelet application to the numerical
solution of PDEs can be formulated in a variety of ways, such as wavelet-Galerkin, wavelet-
moment and wavelet-collocation. A common feature in most approaches is the use of wavelet
multiresolution approximation of PDE operators. Such an approximation, when formulated
on a nonuniform grid in each level of resolution, might have great potential for problems
involving boundary-layer type of behaviour and/or problems associated with complex geometry
where certain regions of the computational domain require a more dense grid. However,
multiresolution approximation has to be carried out in cases where a multiresolution analysis
is required for the purpose of understanding. For an ordinary task of solving a PDE, wavelet
multiresolution approximation, particularly with a uniform grid in each level of resolution,
provides no additional numerical advantage. In fact, technically, it creates an extra level of
complication which reduces the numerical accuracy, stability and computational efficiency. In
the author’s opinion, such an extra level of complication hinders the use of wavelet methods
for solving PDEs.

In the DSC algorithm, the usage is made of the wavelet feature of time–frequency
localization. This is particularly true for regularized DSC kernels. In contrast to wavelet
methods, the DSC algorithm performs computations only at the highest (single) level of
resolution for a given mesh.

In our recent work [55], the DSC kernels and their derivatives have been used in image
processing as low-pass filters and high-pass filters, respectively. These DSC filters have
excellent performance in image edge detection and feature extraction. It is expected that
the DSC kernel-generated wavelets discussed in this paper will be useful for image processing
too. In fact, the Canny operator, a well known filter in edge detection, is identified with the
first member of the Gauss kernel-generated wavelet family. The second member of the wavelet
family happens to be the Mexican hat wavelet. The latter is widely used in image processing
and pattern recognition. The higher-order terms generated by the present method are believed
to have better frequency response to higher-frequency components and can be used to improve
computational accuracy.
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